Powering an inorganic nanodevice with a biomolecular motor.
نویسندگان
چکیده
Biomolecular motors such as F1-adenosine triphosphate synthase (F1-ATPase) and myosin are similar in size, and they generate forces compatible with currently producible nanoengineered structures. We have engineered individual biomolecular motors and nanoscale inorganic systems, and we describe their integration in a hybrid nanomechanical device powered by a biomolecular motor. The device consisted of three components: an engineered substrate, an F1-ATPase biomolecular motor, and fabricated nanopropellers. Rotation of the nanopropeller was initiated with 2 mM adenosine triphosphate and inhibited by sodium azide.
منابع مشابه
Functions and Future Applications of F1 ATPase as Nanobioengine – Powering the Nanoworld!
Recent nanotechnological revolution mandates astonishing imagination about future nanoworld. Nature has ability to create nanobiomolecules which can function in extraordinary way which can be used to produce nano hybrid systems. The opportunity to use such nanobiomolecules in combination of nanomechanical systems for development of novel nano hybrid systems for their various applications needs ...
متن کاملPowering nanodevices with biomolecular motors.
Biomolecular motors, in particular motor proteins, are ideally suited to introduce chemically powered movement of selected components into devices engineered at the micro- and nanoscale level. The design of such hybrid "bio/nano"-devices requires suitable synthetic environments, and the identification of unique applications. We discuss current approaches to utilize active transport and actuatio...
متن کاملNanomosaic network for the detection of proteins without direct electrical contact.
A nanomosaic network of metallic nanoparticles for the detection of ultralow concentrations of proteins is reported, which uses two planar microelectrodes embedded in a microchip that permit generation of capacitive coupling to the nanomosaic system without the need for direct electrical contact with the channel. By tailoring the microchannel surface using a sandwich configuration of polyethyle...
متن کاملWafer-scale nanopatterning and translation into high-performance piezoelectric nanowires.
The development of a facile method for fabricating one-dimensional, precisely positioned nanostructures over large areas offers exciting opportunities in fundamental research and innovative applications. Large-scale nanofabrication methods have been restricted in accessibility due to their complexity and cost. Likewise, bottom-up synthesis of nanowires has been limited in methods to assemble th...
متن کاملBiomolecular Computing Devices in Synthetic Biology
Synthetic biology and biomolecular computation are disciplines that fuse when it comes to designing and building information processing devices. In this chapter, we study several devices that are representative of this fusion. These are three gene circuits implementing logic gates, a DNA nanodevice and a biomolecular automaton. The operation of these devices is based on gene expression regulati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Science
دوره 290 5496 شماره
صفحات -
تاریخ انتشار 2000